Wellhead w/ Pressurized ChemicalNice wellhead on a beautiful day in the Eagle Ford Shale east of Austin. The well uses a form of pressurized chemical (in green tank) that would be released 10-times a day down the casing (followed by tubing flush fluid which was opened by means of an automated valve) to provide many daily "mini-batch" chemical treatments. | Wellhead w/ Chemical PotInteresting well head configuration with a large chemical pot (chemical can be poured in the pot then flushed downhole by using the tubing fluid). Andrews, Texas. | Casing HeadCasing head as it looks after the drilling rig has moved out and before the well has been completed. | Re-Entry WellThis was a plugged well that is going to be re-entered. Operator dug down to the cut casing and installed a piece of casing and wellhead to bring the well back up to surface but they have not yet covered the well back up. |
---|
Slip-Stream Chemical DiagramThe chemical "slip-stream" is a 3/8" aluminum pipe that carries flush fluid from the tubing to the casing. Its VITALLY important the slip-stream doesn't plug up as the flush fluid carries the chemical downhole. Without flush fluid, the chemical will drool down the casing walls and likely "gunk out" before reaching the pump causing your chemical treatment to be highly inefficient. I usually find, on average, about 60-70% of the slip-streams on wells I check are plugged up or closed off! | Robot WellRobotic Well - this well has more gadgets and gizmos than I even understand. I've never seen such a complicated set-up. Eagle Ford, 2015. | Robot Well IIFancy wellhead w/ several sensors tied into the Lufkin Well Manager (POC): has tubing and casing pressure kill-switches and an anti-pollution stuffing box dump pot. | Wellhead w/ Circulation LoopWell head in Midland, TX. Has a circulation loop (left side) and the production loop (right side). |
---|
Wellhead & Casing Head in CellarWellhead with the cellar not yet filled in. Mentone, TX. | WellheadWellhead w/ a Polished Rod Lubricator on top the Stuffing Box. Big Spring, TX. | Messy WellheadMessy wellhead after a recent stuffing box leak. You can see the slip-stream (lets fluid "slip" from the tubing to the casing to help carry the continuous chemical injected downhole to the pump). Andrews, TX. | WellheadBasic Wellhead. Midland, Texas. |
---|
New WellheadPretty wellhead configuration (...obviously on a brand new well) which supervised the construction of myself by Iraan, Texas. | Sassy Gassy WellFound the well making a stuffing box leak due to bad gas interference so I backed my truck up to the well in order to drop the rods to help the pump better "pass the gas". Pecos, Texas. | PR LubricatorPolished Rod Lubricator with oil wicks to lubricate the polished rod. | Stuffing Box & Rod BOPStuffing Box w/ a Rod BOP below it and a Greese Time-Release fitting screwed into the stuffing box where the grease nipple usually is. Mentone, Texas. |
---|
Stuffing Box with Leak Pot | Tubing Back-Pressure ValveBaird Back-Pressure Valve - used to hold tubing pressure to keep the top of the tubing fluids from flowing off. Lamesa, Texas | Scaled-Up Back-Pressure ValveHere are the guts of a Baird Back-Pressure Valve that was scaled up, causing a flow restriction and excessive tubing pressure to be held. Lamesa, Texas. |
---|
Wireless Echometer Fluid Level Gun & Dynamometer Pictures
Echometer Horseshoe DynamometerThe Echometer Horseshoe Dynamometer sitting on top of a load cell for POC. This was on a new well and the POC was not yet in use (no load cell cable installed). | Two Dyno's, Load Cell & Rod RotatorEchometer horseshoe loadcell, rod rotator, POC loadcell and Echometer PRT (screw-on) dynamometer. | Echometer DynamometersThe 2 most common forms of the Echometer Dynamometers. The Horseshoe Dyno (underneath the PR-Clamps) is a true load cell that physically weighs the rod string while the more popular quick-install PRT (Polished Rod Transducer; screwed onto the PR) measures the relative changes in load between the up-stroke and down-stroke to determine the fluid load. | Echometer PRT DynoEchometer PRT Dynamometer sitting on the base of the pumping unit. |
---|
Horseshoe DynoEchometer's wireless Horseshoe Dynamometer is primarily used for troubleshooting wells that are not producing, for getting exact rod loading measurements, and for performing counter-balance tests. | Echometer Fluid Level GunThe FL Gun shoots a pressure pulse down the well (using pressurized CO2 or N2) to determine the depth to the fluid and determine how much fluid is above the pump intake. | H-15 FL Shot Down Open Top CasingThis old inactive had the casing head removed and now there is nothing but the top joint of casing open to atmosphere. I wedged a piece of rubber around the gun to keep it from falling and to help concentrate the acoustic reflection back to the gun's microphone. The clarify in the FL shots was surprisingly good. Iraan, TX. | Stack Out Rods 1Rods are stacked out on the wellhead in order to install the Horseshoe Dyno beneath the Polished Rod Clamps. I used my suitcase for this stack-out. |
---|
Stack Out Rods 2Another well with the rods stacked out on the wellhead. See the next picture for a closer view. The stackout process is a liability risk and takes a good amount of time and that is why the screw-on PRT is usually preferable (and faster/safer). | Stack Out Rods 3Rods again stacked out. A Stack-Out Stand supports the weight and protects the packing in the stuffing box. Above the stand is the Polished Rod Liner, the Stack Out Clamp, followed by the Bridle, my Horseshoe Dyno, then the two Polished Rod Clamps. | Polshed Rod BendingNotice how this Polished Rod bends on the horse-head at the top of the stroke (it is actually due to the bridle wire being too short and the PR-Clamp hitting the head). PR Bending can cause the Dyno cards to slant (especially on the PRT Dyno) as this additional side loading is interpreted by the dynamometers to be "additional" loading from downhole. | Recording Dyno CardsEchometer dynamometer installed and recording dynamometer cards. |
---|
Diagnosing WellsThis well would not pump and I was in the process of diagnosing the problem. A Fluid Level Shot was being taken down the tubing as there was no fluid at surface. It ended up being a Tubing Leak. | Swaged Down from 2" to 1/4"Sometimes you just have to have the right tools to get the job done efficiently. Here I am shooting down a 1/4" ball valve. Ideally, I would have shot down an open 2" connection but the 2" ball valve (copper color) was froze up and would not close, so I had to improvise. | Fluid Level Gun Volume ChamberThe standard volume chamber that comes with the Echometer fluid level gun is attached to the gun. The volume chamber in front of it is 3-times the standard size and I use it for shooting deep wells that have difficult to see fluid levels. | Wired Echometer Fluid Level GunWired equipment. All the other pictures in this gallery show the wireless equipment. |
---|
Wired Dynamometer on Rotaflex Well | Echometer's Gun ShopEchometer's gun shop in Wichita Falls, Texas. |
---|
Rod Pumping Failure Pictures
Pump - Clutch Beat UpTop clutch on sucker rod pump pounded due to hard tagging. | Plunger - Sand CutTop section of the pump plunger is heavily worn/cut due to sand/solids grinding between the plunger and the barrel. | Plunger Stuck - Stack Off BridleNotice the problem here? The well was pumping fine. I turned it off a couple minutes and then turned it back on and the Polished Rod Clamp started separating from the bridle at the bottom of the stroke each stroke, which indicates the plunger got stuck at the top of the barrel (in sand/scale) during that brief down-time and the rods are just coiling up and stacking out on the down-stroke. It wasn't a good day. | Tubing Leak - Rod Wear Track with CorrosRod wear track due to rod box rubbing in tubing. |
---|
Tubing Leak - Paper Thin | Bacteria Pitting on OD of Tubing | Rod Wear - Box Worn to Threads | FG Rod Bird NestParted fiberglass rods tend to break out into strands in what looks like a broom or a bird nest. |
---|
Pitting on Rods - Bacteria 1.bUnder-deposit pitting: the pitting is only revealed after cleaning up the rods with a wire brush (deep pitting hidden beneath all the black spots). Looks like bacterial pitting. | Pitting on Rods (Unusual Shape)Unusual character of pits. | PPU - High Rod Part & Bent PRRods parted high and there was enough elastic energy stored in the stretched rods to cause the upper rods (above the rod part) to jump causing the bridle wires to slip off the sides of the horse head. | Sucker Rod Box - Extreme CorrosionI pulled this out of a well that had been sitting idle for several years before it was pulled: heavy corrosion all around the rod box due to the corrosive water. |
---|
Rod Box - Pitting | Rod Part - Parted Plane with Tear Lip | Rod Part - Focus in on Initiating Pit | Rod Wear - Rod with Stress Cracks |
---|
Rod Wear TrackLooking down a joint of tubing that failed due to a tubing leak. You can see the smooth/polished track where the rods were rubbing. | Casing Leak - Mud Oozing Out TbgWell had a casing leak. Pulled tubing out of hole and had thick drilling mud in all of the tubing. | Scale in FlowlineScale almost completely sealing off the internal ID on the flowline on a rod pumped well. | Pitted & Egged Traveling ValveDamaged Traveling Valve Balls will lead to excessive slippage (and will look like a worn pump on the Pump Card from a dynamometer test). |
---|
Leaks & Other Problems:
PR Liner LeakPolished Rod leak though a pin hole. Click the link below to see video: | Stuffing Box LeakTypical stuffing box leak: making a mess!! Click link below to go to video: | Massive Stuffing Box LeakLake of oil around the wellhead due to a massive stuffing box leak. | Cone PackingCone Packing: this is the rubber element that forms the pressure seal on the Polished Rod and allows the PR to reciprocate up-and-down while maintaining a pressure seal to prevent stuffing box leaks. Produced oil and grease are the primary lubricants that extend packing life and reduce stuffing box friction. |
---|
Environmental Stuffing Box ContainmentEnvironmental Stuffing Box Containment. A sensor inside is connected to the POC and when the container senses there is fluid inside it shuts the pumping unit down. This is one way to minimize stuffing box leaks from becoming a big mess. The one problem with these is that rain water often gets in and can cause the sensor to think there is a stuffing box leak and prematurely shut the well down (...so some pumpers just rip them off). | Water MakerThe classic image of a well that makes a very high water cut. Oil is the primary lubricant for the stuffing box packing, so when a well makes a very high water cut it tends to have more stuffing box leaks and you tend to see wellheads that look like this: covered in salt but not covered in oil. | SBox Grease StringersStuffing box coated in grease. | AlignmentTerrible alignment of the PPU over the hole. In most normal wells this would cause continuous, repeated stuffing box leaks. This well in particular is a stripper well that makes very little fluid and only had 20# TP. I have never seen such bad alignment and asked the pumper how the stuffing box is able to hold the pressure and he said it only gives him problems during winter when the weather is cold!! |
---|
Alignment 2Pumping unit is too far over the hole and badly out of alignment. This will lead to premature stuffing box leaks and broke polished rods: need to pull the PPU back away from the well!! The operator put a piece of poly-pipe on top of the PR to try and protect it from repeated banging on the horse-head. | PR PitMassive pit in the Polished Rod! Normally, this would tear up the stuffing box packing and cause repeated leaks. However, this is another stripper well that runs 15% of the day with low TP and the operator is hoping he can hold off and wait till the next failure to replace the PR. | AsphaltenesWell makes heavy asphaltenes and you can some of it oozing out! |
---|
Pump Off Controller (POC) & Time Clock Pictures
POC Dyno - Wrong FillageThis pump card plotted on the POC (Lufkin 2.0 controller) is not reading the correct fillage: the POC thinks there is "76% fillage" but the cards show the actual fillage is about 35%. The Fill Base is set too high at 55% (after adjusting it down the POC started reading the correct fillage). This well has a VSD and since the POC was not reading the correct fillage it was running 100% everyday until I corrected it: this is why all wells with POC's need to be verified & calibrated. | Pump Card - Gas LockThe full rectangular card is how the Pump Card looks when 100% liquid fillage. The other cards plotted against it show the pump is fully gas locked (the whole stroke is essentially just Gas Expansion & Gas Compression). | Standard Card - Rod PartThis well has a failure.
This dynamometer plot on the Lufkin POC shows the saved 'Standard' Pump Card (dashed) plotted against the current pump cards with the failure (the flat lines on bottom). The current pump cards plot well below where they should, which indicates the well has a high Rod Part. | Gassy Run Cycle PatternThe run cycles are very erratic with a very long 1-hour down-time: this is usually a very good indication the well has gas interference. |
---|
Lufkin 2.0 Pump Off ControllerFront cover of Lufkin 2.0 POC | Lufkin 2.0 POC - InterfaceInterface for the Lufkin 2.0 Pump Off Controller. | Lufkin (Sam) Pump Off ControllerMain status screen display on the Lufkin POC. | Lufkin 1.0 Pump Off ControllerLufkin 1.0 POC. In my opinion the Lufkin POC is the best on the market and the Lufkin 2.0 has some nice new features, but the Lufkin 1.0 controller is still my favorite and easier/faster than the 2.0 to navigate around to diagnose the well. |
---|
Rod StretchDynamometer cards on the Lufkin POC show the well has extreme rod stretch: need to either downsize the pump or reduce the length of the Fiberglass Rod taper (or both). | Plugged Intake + Friction/Drag?This is another example of a well showing extreme Rod Stretch. This well has a plugged pump intake (fluid level was right below surface on the backside but this fluid column is not communicating with the pump) but this well also appears to have some sort of additional downhole friction somewhere that is further reducing the downhole stroke length (like paraffin) as a rod design simulation shows the plunger should have a much longer downhole stroke than it does (even when pumped off). | Weatherford POC & VSDWeatherford POC/VSD combo. | Weatherford POC 2.0Weatherford's 2.0 POC: cards show tension being pulled at the top of the stroke. Looks like the pump is tagging up but actually the Polished Rod was too short and not spaced properly and the bottom box on the PR was pulling into the stuffing box at the top of the stroke. |
---|
Weatherford Well Pilot POCHere is the main status screen for the Weatherford 1.0 Pump Off Controller. | Weatherford POC 1.0Dynamometer cards on the Weatherford 1.0 Pump Off Controller. | Spirit Genesis POC & VSD | Spirit Genesis POC InterfaceThe main status screen for the Spirit Genesis controller. |
---|
Djax Penny Pincher POCDjax POC mounted to the front panel box. This POC senses "Pump Off" by measuring the time it takes for each pump stroke to occur. As the downhole pump fillage drops the well's pumping speed increases ever so slightly, and once that increased speed crosses the set threshold the POC turns the well off. | Djax Penny Pincher POC - ExplainedInside the Djax POC panel box. This well has ran the last 2-hours and 54-minutes straight. The Full Barrel Time (FBT) is 8.734 seconds/stroke and once the pumping speed increases by 0.020 (= 20 Delta T), meaning it takes 8.714-sec/stroke, the POC will turn the unit off. The current pumping speed 8.732-sec/stk (shown on top). The "life-bar" represents how far the POC is from reaching the 20 DT threshold. | Djax Penny Pincher POC SensorThe Djax POC measures stroke speed with this crank sensor wand that picks up a magnet attached to the back of the crank. | POC Controlling Baseed on Surface CardThis is an older Weatherford controller that only displays a Surface Card (the load on the Polished Rod). This well pumps off and the card shown is when the pump has 100% liquid fillage. To minimize fluid-pound I changed the location of the set point from the yellow dot to the red dot: when the Surface Card plots over/above the set point the POC shuts the well down. It is usually best to calibrate these POC's with an Echometer dynamometer that shows the Pump Card. |
---|
Pump Tag Violating Malfunction Set PointThis is a plot of the Surface Card and this well has a hell of a tag and the POC shut the well down due to violating the Malfunction Set Point (dot). The Malfunction Set Point is violated when the load on the up-stroke plots below where the Malfunction Set Point dot is. | Lufkin POC - Gas Locked WellSurface and Downhole Pump cards. The POC is not properly programmed (as the Fillage Set Point is at 25%!) and the shape of the pump card indicates significant gas interference (and that the pump was essentially gas locked). | Lufkin POC - Worn PumpThis pump card indicates a heavily worn pump as the full fluid load is only picked up in the middle of the up-stroke (when the plunger is moving the fastest). | Lufkin POC - Variable Slippage PumpThis is a VSP Pump that is designed to let the fluid slip off the plunger at the upper part of the stroke (in order to compress the gas in the pump for the next down-stroke). However, the pump is also worn as indicated by too much VSP slippage at the top and that it is slow to pick up the full fluid load at the start of the up-stroke (full fluid load not picked up until 25"). |
---|
Lufkin POC - Erratic Valve ActionThis is one of the craziest set of cards I have ever captured. Some pump wear is evident on the good strokes, then on other strokes the full fluid load is not even picked up (making the effective displacement of those strokes 0%). The well has yet to be pulled, but I'm confident it Traveling Valve ball is either egged in shape or pitted (see the next picture) causing the Traveling Valve to sometimes seal and other times to not seal just depending how the ball landed on the seat that stroke. | Egged & Pitted Traveling Valve BallsMis-shapen traveling valve balls like this would explain the unusual cards seen in the prior image. | Lufkin POC - Malfunction Set PointThe Malfunction Set Point (a violation parameter) was violated too many strokes causing the POC to shut the unit down. When the up-stroke load on the surface card drops below the Malfunction Set Point (the black dot) the current stroke was in violation and this is most commonly due to a rod part, Delayed Traveling Valve Closure, or the Traveling Valve never closing (due to solids getting between the ball and seat), which was the cause in this case. | Lufkin POC - Up-Stroke TagThis well has both gas interference and an up-stroke tag. The gas interference was due to fact the pump plunger was spaced way off bottom causing the pump to have a very poor Compression Ratio. |
---|
POC Load Cell & Leveling WashersThe bridle on this well was not exactly level. As as result you can see two leveling washers under the load cell are not fully in alignment (which is good; that is what they should do). | Friction Damping Factors Too HighThe damping factors (which are assumed and remove downhole friction on the rod string so it doesn't show up in the Pump Card) are set too high and as a result the Pump Card is distorted and the POC is miscalculating the fillage and it was running the well 100% of the day. I adjusted the damping factors down and the cards corrected and the POC was able to correctly interpret the fillage and shut the well down at pump off! Dyno-Might!! | POC Load Cell Leveling WashersThe upper washer sits in a bowl-like groove on the lower washer allowing the upper washer (and POC load cell) to stay level and avoid side-loading which can distort the Dynamometer Cards. | Lufkin POC - Gas Interference & TagThis well had terrible gas interference, so the rods were dropped to find bottom and the pump has a light tag (seen in the lower left corner of the card) and a gas compression down-curve despite the well having 1800' of Gas Free Liquid Above the Pump (GFLAP). |
---|
Weatherford POC - Can-Opener Card IThis is the "Can-Opener" card: it is composite mixture of Incomplete Pump Fillage (either due to Gas Interference or Fluid Pound) and Slippage due to pump wear. It's an unusual card you don't often see. In this case, the well ended up being pumped off (it is a 4500' vertical well, pumping fast w/ FG rods). See the next image. | Weatherford POC - Can-Opener Card IIThis is the same well that had the Can-Opener card AFTER it had been turned off for several minutes: now you just see upper barrel slippage due to a worn upper barrel. With the well having been turned off for several minutes, the pump is now full of liquid and you don't see the incomplete fillage showing up (like you did in the previous card). | Oil Field Timer - 15-min PercentageThis is a common time clock out here in the Permian Basin. You set the timer by moving the knob and the black arrow. The red dial moves counter-clockwise around every 15-minutes: when it hits the zero-mark, the unit turns off, and the unit turns back on when the red arrow passes the black arrow. It is known as a 15-minute Percentage Timer. | Oil Field Timer - 15-min Pin TimerThis old fashioned timer has 96-pins on it and each pin represents 15-minutes. The dial rotates and a sensor on bottom (right above the "Tork" label) is pushed down by the pins that are flipped out causing the well to run. So if the timer had a pattern of 4-pins out, 4-pins in, the well would run on a 1-hour ON, 1-hour OFF pattern. |
---|
Adjustable TimerThis is one of the best timers I have seen as it gives you complete flexibility to set the ON & OFF time. The screws on the right side allow you to adjust the time increments from minutes to hours, so if you want you could set the well to run 1.5-hrs ON, 7-min OFF. Complete flexibility as opposed to having a 15-min percentage timer (where the unit turns on an off all day; not good for wells needing little run time) and it even gives more flexibility than a 15-min pin timer. |
---|
Rod Pumping Optimization: a few extracted slides from a training course...
Rod Pumping OptimizationHere are a few extracted slides from a Rod Pumping Optimization training course I performed (most of the slides pertain to Dynamometer Card Interpretation). I have many more slides on every tropic related to Sucker Rod Pumping and would be happy to help train your Engineers, field Foreman, Pumpers and Well Techs on whatever topics you are interested in. | Rod Pumping System Concepts | Downhole Rod Pump | Dynamometer Card Interpretation |
---|
Surface Dyno Card | Wave Equation to Calculate Pump Card | Pump Dynamometer Card | Traveling & Standing Valve Action |
---|
Pump Card Interpretation | Keys to Interpreting Pump Card | Liquid vs Effective Pump Fillage | Ideal Dynamometer Card: 100% Fillage |
---|
Fluid Pound & Gas Interference | Pump Wear & Delayed TV Closure | Solids Sticking in Rod Pump | Friction Dyno Cards: Rod-on-Tubing |
---|
Gas Lock & Unique Card | Consecutive Stks: What's Happening? | "Can-Opener" Cards | Fluid Pound Dynamometer Cards |
---|
Gas Interference Dyno Cards | Gas Lock Dynamometer Cards | Tag on Pump: FG vs Steel Rods | Plunger Spacing: Function of Fillage |
---|
Up-Stroke Tag | Destructive Pumping | Incomplete Pump Fillage Spectrum | I Have Much More to Share |
---|
Shawn Dawsey @ Downhole Diagnostic |
---|
Other Forms of Artificial Lift
ESP with Cooling FanShooting a fluid level on a gas lift well. The bottomhole tempature is hot and the well makes so much fluid that the produced fluid has to be cooled down (radiator with cooling fan) before it is sent to the tank battery. North Dakota. | Gas Lift WellheadConventional gas lift wellhead: gas is being injected down the backside and aerating the tubing to help lift the fluids to surface. Mertzon, TX. | Gas Lift - Frozen Injection LineGas lift injection line is frozen up on outside (but still injecting). Mertzon, TX. | Gas Lift CompressorGas lift compressor for a single location. |
---|
Slickline Truck on Gas Lift WellSlickline truck is replacing a bad gas lift valve on a well. | Plunger Lift WellPlunger lift wellhead. Belfield, ND. | Plunger Lift - Pad PlungersTypical pad plungers. | Plunger Lift ControllerPCS Ferguson plunger lift controller. |
---|
PCP - Progressive Cavity PumpProgessive Cavity Pump on wellhead. This well used to be produced by a pumping unit but it couldn't pump the well down, so they changed over to PCP. | PCP - Progressive Cavity Pump 2Progressive cavity pump on oil well. Odessa, TX. | PCP RotorRotor (which is attached to the bottom of the rod string on a PCP well) laying on the ground. | ESPESP wellhead. The way to distinguish it is producing by an ESP is only by the fact the ESP cable is running through the wellhead to the downhole motor. |
---|
ESP Bands on CableESP cable is banded to the tubing all the way from surface to the downhole motor. Sometimes these bands can create enough noise in the Fluid Level Shot to make getting a good Collar Count (which the Echometer software uses to calculated the the Acoustic Velocity) difficult, so if you shoot an ESP well make sure the calculated Acoustic Velocity is reasonable. | Jet Lift WellheadJet lift wellhead installation. North Dakota. | Jet Lilft Wellhead 2Another Jet lift wellhead installation. |
---|
Oilfield Scenery:
Midland - Time ServedIf you moved out here for work, you know that's funny! | Sunset PPUMontana Sunset | West Texas SunsetThere is nothing like a west Texas sunset (...no trees to block your view!) | Flare TankYes, this is a flare tank. Doesn't seem exactly safe but I guess at least it will catch any liquids that accidentally push over. Found this beauty in Montana. |
---|
Sand HillsI was told to shoot a fluid level (H-15 Test for the RRC) on this abandoned well located in the sand hills of Andrews, TX, and this is what I found! | Wind SockBeing a one-man company, I kind of feel like this wind sock some days when I am slammed with work! | Tank Battery SunsetPicture taken by Wink, Texas. | Starlight PPUMark II Pump Jack at nightfall in Montana. |
---|
Sunset PPUWest Texas sunset as storm approaches. Mentone, TX. | ShadowsShadows on the walls. | Oil Pipeline Construction | Red SunsetPecos, Texas. |
---|
North Dakota Location | Midland SunsetPicture taken from Midland College. | Cowboy Country | Midland WeatherJust when you think your trees are bound to get some rain from the massive storm... |
---|
Sunset on Pecos Pulling Unit | Flying into Midland | God's LandSnapped this pic driving back to Midland. Good fortunes to come. | Rod Pump Traveling & Standing Valves |
---|
Well Kicking Up the TubingWe were pulling rods when the well kicked fluid up the tubing. The pulling unit hand is trying to stab a valve onto the tubing so we can close the well in! | Constructing a Tank BatteryThe Heater Treater (3-phase separator) is on the left and 2-oil tanks and 1-water tank are on the right. Directly in front is the Header where multiple wells will have their flowline tie into the battery. | From Parched LandWe don't get much rain out here but we are blessed with oil. | Rods Hung in DerrickSteel rods hanging in the derrick in triples. Some of the rods have 2 Molded Rod Guides per rod and some are bare steel. Eagle Ford well. |
---|
Rods in Derrick: Dripping Texas Tea | My Oilfield NightLightSouth Texas. | Day Before the FracWireline is rigged up to the well through the lubricator (being held by the crane) and shooting the bottom set of perforations. The frac crew moves in tonight. Pumping starts at crack-of-dawn tomorrow. | Sunset in Pecos, TX |
---|